This article was downloaded by: On: 28 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: <http://www.informaworld.com/smpp/title~content=t713646857>

Phase Equilibria in the Ternary System Methyl 1,1-Dimethylethyl Ether Heptane Octane

Jaime Wisniakª; Gabriela Embonª; Ran Shafirª; Ricardo Reichʰ; Hugo Seguraʰ ^a Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel ^b Departmento de Ingeniería Química, Universidad de Concepción, Concepción, Chile

To cite this Article Wisniak, Jaime , Embon, Gabriela , Shafir, Ran , Reich, Ricardo and Segura, Hugo(1998) 'Phase Equilibria in the Ternary System Methyl 1,1-Dimethylethyl Ether Heptane Octane', Physics and Chemistry of Liquids, $37: 1, 51 - 63$

To link to this Article: DOI: 10.1080/00319109808032799 URL: <http://dx.doi.org/10.1080/00319109808032799>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use:<http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1998, Vol. 37, pp. 51-63 Reprints available directly from the publisher Photocopying permitted by license only

PHASE EQUILIBRIA IN THE TERNARY **SYSTEM METHYL 1,1-DIMETHYLETHYL** $ETHER + HEPTANE + OCTANE$

JAIME WISNIAK^{a,*}, GABRIELA EMBON^a, RAN SHAFIR^a, RICARDO REICH^b and HUGO SEGURA^b

^a Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105; ^bDepartmento de Ingeniería Química, Universidad de Concepción, Concepción, Chile

(Received 24 July 1997)

Vapor-liquid equilibrium at 94 kPa has been determined for the ternary system methyl 1,1-dimethylethyl ether (MTBE) + heptane + octane. The system deviates positively from ideality and no azeotrope is present. The ternary activity coefficients and the boiling points of the system have been correlated with the composition using the Redlich-Kister, Wilson, NRTL, UNIQUAC, UNIFAC, and Wisniak-Tamir relations. Most of the models allow a very good prediction of the activity coefficients of the ternary system from those of the pertinent binary systems.

Keywords: Vapor-liquid equilibrium; activity coefficients; ternary systems

1. INTRODUCTION

The Reformulated Gasoline Program of the United States requires that gasoline must fulfill stringent requirements on ozone-forming and air toxic emissions. In order to do so gasoline has to contain 2.7% oxygen by mass in the winter months in areas that are in non-attainment on CO standards. Commonly used oxygenating additives are MTBE, methanol and ethanol. MTBE it is the primary oxygenated compound being used

^{*}Corresponding author.

to improve the octane rating and pollution-reducing capability of gasolines. Phase equilibrium data of oxygenated mixtures are important Tor predicting the vapor phase composition that would be in equilibrium with hydrocarbon mixtures, and the system reported here constitutes an example of such mixtures. Vapor-liquid equilibrium data for the three binary systems methyl 1,1-dimethylethyl ether (1) + heptane (2) , methyl 1,1-dimethylethyl ether (1) + octane (3) , and heptane (2) + octane (3) have already been reported at 94 kPa by Wisniak *er a/.* [I, 21, the three systems present slight to moderate positive deviations from ideality and do not have azeotropic points. The present work was undertaken to measure vapor-liquid equilibria (VLE) data for the ternary system for which no data are available.

2. EXPERIMENTAL SECTION

2.1. Purity of Materials

Methyl 1,1-dimethylethyl ether (99.93 mass%), heptane (99.57 + mass %), and octane (99.80 mass *"0)* were purchased from Aldrich. The reagents were used without further purification after gas chromatography failed to show any significant impurities. The properties and purity (as determined by GLC) of the pure components appear in Table **I.**

2.2. Apparatus and Procedure

An all-glass vapor-liquid-equilibrium apparatus model 602, manufactured by Fischer Labor-und Verfahrenstechnik (Germany), was used in the equilibrium determinations. In this circulation method apparatus, about 100 mL of the solution is heated to its boiling point

TABLE 1 Mole percent GLC purities (mass $\%$), refractive index n_D at the Na D line. and normal boiling points *T* of pure components

Component (purity/mass %)	N_D (298.15 K)	T/K
methyl 1,1- dimethylethyl ether (99.93)	1.3661 ⁿ	328.29^4
	$1.3663^{\rm h}$	328.35^{h}
heptane (99.57)	1.3851 ^a	371.54°
	1.38513^c	371.553°
octane (99.80)	1.3948	398.50 ^a
	1.3952 ^d	398.83 ^d

"Measured. ^bTRC Tables, a-6040 [12]. "TRC Tables, fa-1460 [13]. ^dTRC Tables, f-1490 [13].

by a 250 W immersion heater (Cottrell pump). The vapor-liquid mixture flows through an extended contact line which guarantees an intense phase exchange and then enters *a* separation chamber whose construction prevents an entrainment of liquid particles into the vapor phase. The separated gas and liquid phases are condensed and returned to a mixing chamber, where they are stirred by a magnetic stirrer, and returned again to the immersion heater. Temperature control is achieved by a *5* mm diameter Pt-100 temperature sensor, with an accuracy of 0.1 K. The total pressure of the system is controlled by a vacuum pump capable of working under pressures down to 0.25 kPa. The pressure is measured by a Vac Probs pressure transducer with an accuracy of 0.1 kPa. On the average the system reaches equilibrium conditions after $0.5 - 1$ h of operation. Samples, taken by syringing $0.7 \mu L$ after the system had achieved equilibrium, were analyzed by gas chromatography on a Cow-Mac series 550 P apparatus provided with a thermal conductivity detector and a Spectra Physics Model SP 4290 electronic integrator. The column was 3 m long and 0.2 cm in diameter, packed with SE-30. The column, injector, and detector temperatures were (368.15, 493.15, and 543.15) K. Very good separation was achieved under these conditions, and calibration analyses were carried out to convert the peak ratio to the mass composition of the sample. The pertinent polynomial fits had *a* correlation coefficient *R'* better than 0.99. Concentration measurements were accurate to better than 0.009 mole fraction.

3. RESULTS

The temperature *T* and liquid-phase x_i , and vapor-phase y_i mole fraction measurements at $P = 94$ kPa are reported in Table II, together with the activity coefficients γ which were calculated from the following equation *[3]:*

$$
\ln \gamma_i = \ln \left(\frac{P y_i}{P_i^0 x_i} \right) + \frac{(B_{ii} - V_i^L)(P - P_i^0)}{RT} + \frac{P}{2RT} \sum_j y_j y_k (2\delta_{ji} - \delta_{jk})
$$
\n(1)

where *T* and *P* are the boiling point and the total pressure, V_i^L is the molar liquid volume of component *i*, P_i^0 is the pure component vapor

TABLE II Experimental vapor-liquid equilibria data for methyl 1.1-dimethylethyl ether (1) + hentane (2) + octane (3) at 94 kPa **TABLE If** Experimental lapor-liquid equilibria data for methyl 1.1-dimethylethyl ether (I) heptane (2) +octane (3) at 94 **kPa**

Downloaded At: 08:05 28 January 2011 Downloaded At: 08:05 28 January 2011

pressure, B_{ii} and B_{jj} are the second virial coefficients of the pure gases, B_{ij} is the cross second virial coefficient, and

$$
\delta_{ij} = 2B_{ij} - B_{jj} - B_{ii}
$$
 (2)

The standard state for calculation of activity coefficients is the pure component at the pressure and temperature of the solution. The pure component vapor pressures P_i^0 were calculated according to the Antoine equation:

$$
\log(P_i^0/kPa) = A_i - \frac{B_i}{(T/K) - C_i} \tag{3}
$$

where the Antoine constants A_i , B_i , and C_i are reported in Table III. The molar virial coefficients B_{ij} and B_{ij} were estimated by the method of Hayden and O'Connell [4] by assuming the association and solvation parameters to be negligible. The last two terms in Equation (I) contributed less than 7% to the activity coefficients, and their influence was important only at very dilute concentrations. The calculated activity coefficients reported in Table II are estimated accurate to within *3%* and were found to be thermodynamically consistent as tested by the L-W method of Wisniak *[5]* and the McDermot-Ellis method [6] modified by Wisniak and Tamir [7]. According to these references two experimental points *a* and *b* are considered thermodynamically consistent if the following condition is fulfilled:

$$
D < D_{\text{max}} \tag{4}
$$

The local deviation D is given by

$$
D = \sum_{i=1}^{N} (x_{ia} + x_{ib})(\ln \gamma_{ia} - \ln \gamma_{ib})
$$
 (5)

TABLE Ill Antoine Coellicients, Equation *(3)*

Compound	A.		
methyl 1,1-dimethylethyl ether ^a	5.86078	1032.988	59.876
heptane	6.02023	1263.909	56.718
octane	6.05141	1354.107	63.888

^aReich [14]. ^bTRC Tables, k-1490 [12]..

where *N* is the number of components and the maximum deviation D_{max} is:

$$
D_{\max} = \sum_{i=1}^{N} (x_{ia} + x_{ib}) \left(\frac{1}{x_{ia}} + \frac{1}{y_{ia}} + \frac{1}{x_{ib}} + \frac{1}{y_{ib}} \right) \Delta x
$$

+
$$
\sum_{i=1}^{N} (x_{ia} + x_{ib}) \frac{\Delta P}{P} + 2 \sum_{i=1}^{N} |\ln \gamma_{ib} - \ln \gamma_{ia}| \Delta x
$$
(6)
+
$$
\sum_{i=1}^{N} (x_{ia} + x_{ib}) B_{j} \{(T_{a} + C_{j})^{-2} + (T_{b} + C_{j})^{-2} \} \Delta T
$$

The errors in the measurements x , P and T were as previously indicated. The first term in Equation (6) was the dominant one. For the experimental points reported here *D* never exceeded 0.153 while the smallest value of D_{max} was 0.198.

The activity coefficients for the ternary system were correlated using the following Redlich-Kister expansion [8]:

$$
\frac{G^{E}}{RT} = x_{1}x_{2}[b_{12} + c_{12}(x_{1} - x_{2}) + d_{12}(x_{1} - x_{2})^{2}] + x_{1}x_{3}[b_{13} + c_{13}(x_{1} - x_{3}) + d_{13}(x_{1} - x_{3})^{2}] + x_{2}x_{3}[b_{23} + c_{23}(x_{2} - x_{3}) + d_{23}(x_{2} - x_{3})^{2}] + x_{1}x_{2}x_{3}(C + D_{1}x_{1} + D_{2}x_{2}) \tag{7}
$$

The following relationships can be derived from Equation (7)

$$
\ln \frac{\gamma_1}{\gamma_2} = (b_{13} - b_{23})x_3 + (b_{12} + Cx_3)(x_2 - x_1) - c_{13}x_3(x_3 - 2x_1)
$$

+ $c_{12}[2x_1x_2 - (x_1 - x_2)^2] - c_{23}x_3(2x_2 - x_3)$
+ $D_1x_1x_3(2x_2 - x_1) - d_{13}x_3(x_3 - 3x_1)(x_1 - x_3)$ (8)
+ $D_2x_3x_2(x_2 - 2x_1) + d_{12}(x_2 - x_1)[(x_2 - x_1)^2 - 4x_1x_2]$
- $d_{23}x_3(x_2 - x_3)(3x_2 - x_3)$

J. WISNIAK et al.

$$
\ln \frac{\gamma_1}{\gamma_3} = (b_{13} + D_2 x_2^2 + C x_2)(x_3 - x_1) + x_2(b_{12} - b_{23}) + c_{23}x_2(2x_3 - x_2)
$$

+ $c_{13}[6x_1x_3 - (1 - x_2)^2] + c_{12}x_2(2x_1 - x_2) + D_1x_1x_2(2x_3 - x_1)$
+ $d_{23}x_2(3x_3 - x_2)(x_2 - x_3) + d_{13}(x_1 - x_3)[8x_1x_3 - (1 - x_2)^2]$
+ $d_{12}x_2(x_2 - 3x_1)(x_2 - x_1)$ (9)

where b_{ij} , c_{ij} and d_{ij} are the constants for the pertinent *ij* binary, and *C*, D_1 , and D_2 are ternary constants. All the constants in Equations (8) and (9) are assumed to be independent of the temperature. Data and constants for the three binary systems have already been reported [1, 2]. The ternary Redlich-Kister coefficient was obtained by a Simplex optimization technique. The differences between the values of the root mean square deviation for the activity coefficient for the two caseswith and without the ternary constants C, D_1 and D_2 (Tab. IV) – are statistically not significant, suggesting that ternary data can be predicted directly from the binary systems. In fact, equilibrium vapor pressures were correlated very well by the NRTL, Wilson, and UNIQUAC models, and somewhat less by the UNIFAC model [9]

TABLE IV Constants for the Redlich-Kister model

System		$b_{ii} \times 10^2$ $c_{ii} \times 10^2$ $d_{ii} \times 10^2$			rmsd % dev ^a	$max\%$ dev^b
$MTBE(1) + hep$ heptane $(2)^c$ MTBE (1) + octane $(2)^d$ heptane (2) + octane $(3)^d$	7.34 4.25 187	0.08 -0.01 -1.00	243	0.008 0.008 0.004	3.2 2.6	5.9 4.6 30

B. TERNARY

A. BINARIES

"Percent average deviation. ^bmaximum percent deviation. "Wisniak et al. [1]. "Wisniak et al. [2].

using only binary parameters. both for bubble point-pressure and dew point pressure calculations, as shown by the statistics and parameters given in Table V. **In** addition, Table V reports the predictions obtained from the modified UNIFAC model [10], concluding that the binary data allow a good prediction of the ternary system.

The boiling points of the systems were correlated by the equation proposed by Wisniak and Tamir [I I]:

$$
T/K = \sum_{i=1}^{n} x_i T_i^0 / K + \sum_{i,j=1}^{n} \left\{ x_i x_j \sum_{k=0}^{m} C_k (x_i - x_j)^k \right\}
$$

+ $x_1 x_2 x_3 \{ A + B(x_1 - x_2) + C(x_1 - x_3) + D(x_2 - x_3) \}$ (10)

In this equation *n* is the number of components ($n = 2$ or 3), T_j^0 is the boiling point of the pure component *i* and *m* is the number of terms in the series expansion of (x_i-x_i) . C_k are the binary constants where A, B, *C*, and D are ternary constants. The following equation, of the same structure, has been suggested by Tamir [I21 for the direct correlation of ternary data, without **use** of binnry data:

$$
T/K = \sum_{i=1}^{3} x_i T_i^0 + x_1 x_2 [A_{12} + B_{12}(x_1 - x_2) + C_{12}(x_1 - x_2)^2 + \ldots] + x_1 x_3 [A_{13} + B_{13}(x_1 - x_3) + C_{13}(x_1 - x_3)^2 + \ldots] + x_2 x_3 [A_{23} + B_{23}(x_2 - x_3) + C_{23}(x_2 - x_3)^2 + \ldots]
$$
\n(11)

In Equation (11) coefficients A_{ij} , B_{ij} , and C_{ij} are not binary constants, they are multicomponent parameters determined directly from the data. Direct correlation of $T(x)$ for ternary mixtures can be very efficient as reflected by a lower % average deviation and root inean square deviation (rmsd) and a smaller number of parameters than those for Equation (10). Both equations may require similar number of constants for similar accuracy, but the direct correlation allows as easier calculation of boiling isotherms (Figs. 1 and 2). The various constants of Equations (10) and (11) are reported in Table VI. which also contains information indicating the degree of goodness of

UNIFAC (Larsen. 1987).

.
تا . s for different

Downloaded At: 08:05 28 January 2011 Downloaded At: 08:05 28 January 2011

FIGURE ^I lsothertnals for the ternary system **MTBE** (I)+ heptane (2)+ octane (3) at 94 **kPa** from 344 **K** to 366 K. every 12 **K.** Coefficients from Equation (I I).

FIGURE 2 Three-dimensional graph $T-x_1-x_2$.

TABLE VI Coefficients in correlation of boiling points, equations (10) and (11), average deviation and root mean square deviations in temperature, rmsd (T/K)

A. Equation (10)(fit from binary constants)

\boldsymbol{A}	B	C, D	<i>max dev/K</i> ^a avr dev/K ^b		rmsd ^o
-147.8173	103.4212	0	6.60	2.20	0.30
BINARY CONSTANTS					
System		C_n	-65	\mathcal{C}	\mathcal{C}_{3}
MTBE (1) + heptane $(2)^d$ MTBE (1) + octane $(2)^c$ heptane (2) + octane (3) ^e		-30.1335 -65.0826 -9.54589	12.7723 21.8543 5.92320	-7.46950 -13.3961	28.4200

B. Equation 11 (direct fit)

"Maximum deviations. ^bAverage deviations. "rmsd (T/K): Root mean square deviation, $\{\sum (T_{\text{expt}} - T_{\text{calc}})^2\}^{0.5}/N$. "Wisniak *et al.* [1]. "Wisniak *et al.* [2].

the correlation. It is clear that for the ternary system in question a direct fit of the data gives a much better fit.

Acknowledgement

Yehudit Reizner helped in the experimental part. This work was partially financed by FONDECYT, Chile, project No. 1960583.

References

- [1] Wisniak, J., Magen, E., Shachar, M., Zeroni, I., Reich, R. and Segura, H. (1997). "Vapor-Liquid Equilibria in the Systems Methyl 1.1-Dimethylethyl Ether + Hexane, + Heptane", J. Chem. Eng. Data, 42, 243.
- [2] Wisniak, J., Embon, G., Shafir, R., Segura, H. and Reich, R. (1997). "Isobaric Vapor-liquid Equilibria in the Systems Methyl 1.1-Dimethylethyl Ether + Octane and Heptane + Octane", J. Chem. Eng. Data, in press.
- [3] Smith, J. M., Van Ness, H. C. and Abbott, M. M. (1996). Introduction to Chemical Engineering Thermodynamics, Fifth Ed. (McGraw-Hill Book Co., New York), pp. 436 437.
- [4] Hayden, J. and O'Connell, J. (1975). Ind. Eng. Chem. Process Des. Dev., 14, 209.
- [5] Wisniak, J. (1993). *Ind. Eng. Chem. Res.*, 32, 1531.
- [6] McDermott, C. and Ellis, S. R. M. (1965). Chem. Eng. Sci., 20, 293.
- [7] Wisniak, J. and Tamir, A. (1977). J. Chem. Eng. Data, 22, 253.
- [8] Walas, S. M. (1985). Phase Equilibria in Chemical Engineering. (Butterworth Publishers: Boston), pp 192 207.
- [9] Larsen, B., Rasmussen, P. and Fredenslund, Aa. (1987). Ind. Eng. Chem. Res., 26, 2274.
- [10] Wisniak, J. and Tamir, A. (1976). Chem. Eng. Sci., 31, 631.
- [11] Tamir, A. (1981). Chem. Eng. Sci., 36, 1453.
- [12] TRC-Thermodynamic Tables Non-Hydrocarbons, a-6040, 1963: Thermodynamics Research Center. The Texas A and M University System, College Station, TX, extant 1996.
- [13] TRC-Thermodynamic Tables Hydrocarbons, fa-1490, 1990; fa-1460, 1991; k-1490, 1991: Thermodynamics Research Center. The Texas A and M University System, College Station, TX, extant 1996.
- [14] Reich, R. (1996). Private communication.